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In p rob l ems  of flow of a supersonic  s t r e a m  (M > 1) over  bodies with a spat ia l  configuration which slightly 
pe r tu rbs  the incident flow, the gasdynamic  equations can be reduced to a wave equation for  the per turba t ion  
veloci ty potential  in the f o r m  [1, 2] 

F(r = ~.~x - -  ~vy - -  ~ =  = O, 

where  the x axis  is coplanar  with the veloci ty vec tor  of the incident flow. The per tu rbed  flow region i s l imi ted  
by the body sur face  and the leading cha rac t e r i s t i c  of the sur face ,  which is the envelope of cha r ac t e r i s t i c  cones 
whose peaks  l ie on the supersonic  port ion of the bodyts leading edge. 

In consider ing p rob lems  of flow over  an isolated wing of finite s ize  in the l inear  formulat ion,  the condi-  
t ions on the wing sur face  a r e  r e f e r r e d  to a base  su r face ,  which is a plane which deviates  only sl ightly f r o m  
the wing sur face  [3]. In considering flow over  bodies with the configuration of an a i rp lane  ( w i n g - f u s e l a g e -  
a i r  scoops) for  the base  sur face  we choose cyl indrical  su r f aces ,  in pa r t i cu la r ,  p r i s m a t i c  configurat ions with 
edges para l l e l  to the incident flow, such that the faces  of these  p r i s m a t i c  configurat ions deviate only slightly 
f r o m  the slightly curved a i r c r a f t  su r faces  (Fig. 1). The base  sur face  to which the boundary conditions on the 
body a re  r e f e r r e d  is a su r face  of the t i m e -o r i en t ed  type.  The value of the potential  at the point M{x, y, z) in 
the pe r t a rbed  flow region depends on the initial data f o r  only that par t  of the boundary manifold {the leading 
cha rac t e r i s t i c  su r face  a and the base  su r face  S) which is located within the c h a r a c t e r i s t i c  cone r :  ( x -  G) -  
[(y_~)2 + (z -~)211/2 =0. 

If the region of dependence D of the point M has the p roper ty  of vis ibi l i ty  {that is ,  if any point of the region 
of dependence can be joined to the point M by a s t ra ight  line lying wholly within the region of dependence),  then 
the line of in te rsec t ion  of the c h a r a c t e r i s t i c  cone F with the boundary manifold a, S defines the region of de-  
pendence of the point M on this  m a n i f o l d .  The condition of vis ibi l i ty  in the region of dependence D is sa t is f ied 
in the case  where  for  points of the pe r tu rbed  flow region on the body sur face  the re  a r e  no points located within 
the shadow zone, i .e . ,  when the s t ra ight  line pass ing through the point M within the cha r ac t e r i s t i c  cone in t e r -  
sec ts  the body sur face  at not m o r e  than one point. If these  exis ts  a plane T pass ing through point M and tangent 
to the body su r face ,  separa t ing  in space  a vis ibi l i ty  zone and a shadow zone for  point M, then the region of 
dependence of point M ceases  to have the p rope r ty  of vis ibi l i ty .  On the body sur face  the boundary of the v i s i -  
bili ty zone and the shadow zone for  point M is the line of tangency t of the plane T on the body sur face  (line 
AA on the cyl indr ical  base  sur face  of Fig. 2). The region of dependence of point M on the body in the v is ib i l i ty  
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zone is bounded by the line 5' on which the cha rac t e r i s t i c  cone F in te r sec t s  the body sur face ,  while in the shadow 
zone the region of dependence is l imi ted by the spira l  line ~/0, which has a cha rac t e r i s t i c  d i rect ion everywhere  
on the body sur face .  The sp i ra l  line 5'0(MoB0) pass ing through the point of in te rsec t ion  M 0 of the l ines 5' and t .  
The region of dependence of the point M in the visibil i ty zone l ies  within the sur face  of the cha r ac t e r i s t i c  cone 
r ,  while in the shadow zone the region l ies  within the sur face  F 0, which is formed by the envelope of cones 
with ve r t i ces  on the sp i ra l  line 5"o. The su r face  F 0 is tangent to the sur face  F along a line lying in the plane 
of the shadow boundary T. The potential  value at the point M depends on the initial data of only that por t ion 
of the boundary manifold {body sur face  and leading cha rac t e r i s t i c  surface)  which is located within the cha r -  
ac t e r i s t i c  sur face  r in the visibi l i ty zone and within the sur face  1~0 in the shadow zone. The port ion of the 
boundary manifold in the shadow zone located between the su r faces  r and F 0 has no effect on the potential  at 
point M. On the body, this is the region MoBoC, l imi ted  by the leading edge of the body, the sp i ra l  lineMoB0, 
and the line of in te rsec t ion  of the cha r ac t e r i s t i c  cone F with the body sur face  in the shadow zone MoC. For  
a p r i s m a t i c  configurat ion with dihedral  angle lr--T--< 2~, the su r face  r 0 is a cha r ac t e r i s t i c  cone with apex at 
the point M 0 [4]. In [5, 6], which considered flow over  bodies with shadow zones,  the solution at point M was  
presen ted  as dependent on boundary values on a port ion of the body sur face  in the shadow zone lying outside 
the actual  region of dependence of the point M. This d i sc repancy  was  noted in [7], but no method of solving 
the diffract ion p rob lem was suggested.  

For  the region of dependence D having the p rope r ty  of visibi l i ty,  using G r e e n ' s  fo rmula  
p t 
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an integral  r ep resen ta t ion  of the s o t ~ i c ~  irt VolCe~'~ fos c~z~ be obtained [~, ! ,  2, 9] 
i t 

@ (2) 

where  w is the fundamental  Vo l t e r r a  solution; 0/0N, conormal  der iva t ive  @'N=0~/0N, W'N=OW/0N); r ,  por t ion 
of the cha r ac t e r i s t i c  cone f r o m  the apex at point M to the in tersec t ion  with the boundary manifold; S, ~, port ions 
of the su r faces  of  the body and the leading cha rac t e r i s t i c  cone cut by the c h a r a c t e r i s t i c  cone r .  

For  the region of dependence D which does not have the p rope r ty  of vis ibi l i ty ,  we may  fo rma l ly  wr i te  an 
integral  r ep resen ta t ion  of the potential  value at point M i n V o l t e r r a f o r m ,  applying Green ' s  fo rmula  (1) to this  
region:  

i .  t 

1 a t~,@]v,@,w]v 
@ (M) - -  ~ - ~ x  "r+r0+~+a0+s+s0" (3) 

Here  F, F 0 a re  the port ion of the su r face  of the cha r ac t e r i s t i c  cone with apex at point M in the vis ibi l i ty  zone 
and the por t ion of the envelope of cones with apexes  on the spi ra l  l ine ~0; a, % a re  the por t ion of the leading 
cha rac t e r i s t i c  sur face  cut by the cone F and the sur face  F0; S, So are  the regions  of dependence on the body 
in the visibil i ty zone and the shadow zone. 

On the right side of Eqs.  (2), (3), in view of the p rope r t i e s  of the Vol te r ra  function the integral  over  the 
sur face  F vanishes .  On the leading cha rac t e r i s t i c  sur face  a,  o" o the value of the per turba t ion  potential  �9 can 
be taken equal to  ze ro  (~] a =0) without l imi t ing  genera l i ty ,  s ince on the sur face  cr, a 0 the di rect ion of the d e r i v a -  
tive O/ON coincides with the d i rec t ion of the tangent to  the l ine z =coas t  of this  su r face ,  which means  that  on 
the sur face  ~, %, along with the value of r  value of 0e)/0N is a l so  defined and equal to  zero ,  so that  the in te-  
gra l  over  the sur face  a, % in Eqs.  (2), (3) vanishes .  While in Eq. (2) t he r e  r emains  only the in tegral  over  the 
body sur face  S, in Eq. (3) toge ther  with the  integral  ove r  the body sur face  S +So, t h e r e  a lso  r e m a i n s  the integral  
over  the sur face  To, which in view of the p r o p e r t i e s  of the Vol te r ra func t ion  does not vanish.  This  means  that 
in Eq. (3) the p~en t i a l  at the point. M is de te rmined  not only by the values of r 4,' N oft the  body,  but a l so  by the  
values of ~, ~'N unspecif ied on the st~rface F 0 and the integral  r e p r e s e ~ . s  of Eq, {3) |~  not a solution of_ the 
boundary p rob lem ap2.1ogous to  that  of Eq. (2) fo r  the zone of dependence posses s ing  tlie p i ~ p e . ~  of visibi l i ty.  

The p r o b l e ~  of flow over  bodies  with regions  of dependence not havingthe  vis ibi l i ty  p~oper ty  is within 
the c lass  of diffract ion p r o b l e m s :  The c h a r a c t e r  of the  act ion on p o i ~  M of points of i~ f luen te  Iying within 
the shadow zone di f fers  f r c ~  the c h a r a c t e r  of action of points of influence lyi~gw~thin t he  visibtlii~y zone.  While 
for  the v i s ib~! ty  zone we racy use  a solution in theVol t e i ' r a  fo rm,  ref lec t ing  the c h a r a ~ e r  of the d i rec t  act ion 
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of points of influence on the point in question,  for  solution of the diffract ion p rob lem it is n e c e s s a r y  to find 
some solution of the wave equation which will re f lec t  the diffract ion c h a r a c t e r  of the action of points of in- 
f luence on that point. For  the case  of an a r b i t r a r y  dihedral  angle ~-<T-<2~ [4] found a fundamental  solution 
v 0 which cons iders  the diffract ion c h a r a c t e r  of the phenomenon. 

In Eq. (2) for  the vis ibi l i ty  region,  in view of the assumpt ion  that @l~ =0 without l imi t ing genera l i ty ,  and 
the p rope r t i e s  of the Vo l t e r r a  function, the potential  at the point is exp re s sed  solely in t e r m s  of in tegra ls  over  
the body surface  S: 

r t 
t 0 w ~pn,q~,wN 

(M) = -ff~-g7 Is '  . (4) 

Then, s ince conditions on the body sur face  a re  r e f e r r e d  to base  su r faces  of a t ime -o r i en t ed  type,  where  the 
conormal  der iva t ive  of the potential  ~N coincides with the normal  der iva t ive  ~ '  n to the accu racy  of smal l  
s e c o n d - o r d e r  t e r m s ,  Eqo (4) provides  a r ep re sen ta t i on  of the per turba t ion  potential  in t e r m s  of the values  of 

<s and %Is- 
On the t i m e - o r i e n t e d  su r faces  the re  ex is t s  a re la t ionship  between the value of the potential  OIS and its 

normal  der iva t ive  ~nlS , defined in the genera l  ease  of a cyl indrical  base  sur face  by an integrodifferent ia l  ex-  
p ress ion ,  which can be obtained f r o m  Eq. (4) in the l imi t  as the point M approaches  the su r face  S (see, for  
example ,  [2])o 

In the ease  of a region,  the base  su r faces  of which are  an a r b i t r a r y  dihedral  angle 0 < T<rr, where  2/# 
rr/n (n= 1, 2 , . . . ) ,  the values of ~]8 unspecif ied in the d i rec t  p rob lem (the p rob lem of de termining  the veloci ty 
potential  f r o m  the body geometry)  on the face su r faces  a re  defined in t e r m s  of the values of ~ l 'S  f r o m  a s y s -  
t e m  of two integrodif ferent ia l  equations by the method of success ive  approximat ion  [10]. 

For  some p r i s m a t i c  regions ,  by using the method of compensat ing s ingular i t ies  it is poss ib le  to find a 
superpos i t ion  of fundamental  solutions (Green 's  functions) in which in Eq. (4) for  the veloci ty potential  t e r m s  
containing values of ~IS on the faces  a r e  excluded in t h e d i r e c t  p rob lem,  and the value of the potential  is ex -  
p r e s sed  sole ly  in t e r m s  of the values of the normal  der iva t ive  of the potential  ~ l  S on the f a c e s ,  or  in Eq. {4) 
for  the veloci ty potential  t e r m s  containing values of ~ 1 8  on the faces  a r e  excluded in the converse  p rob l em.  

Thus, for  base  su r faces  fo rmed  by a dihedral  angle T=rr/n (n=l ,  2 , . . . ) ,  the in tegra ls  in Eq. (4 ) f rom 
t e r m s  containing the value of the potential  ~IS can be el iminated by using the method of ref lect ion f r o m  the 
faces  of the dihedral  angles for  compensat ing s ingular i t ies  of the V o l t e r r a t y p e  [1, 2, 11], finally obtaining for  
the potential  4~ in the per tu rbed  region an express ion  solely in t e r m s  of values of (~l  S specif ied on the dihedral  
faces  : 

/ , 2 n - - 1  , \ 

Opt(M)= t e /ff,~,~ ) �9 i = 1  I S i l - l - 8 i 2  ' ( 5 )  

t ' I 

81§ S i i + ' S i 2  

Here  w, w i a re  Vo l t e r ra fune t ions  of the point M and the compensat ing point Mi; $1, $2, 8ii , Si2 a re  the regions  
of dependence of points M, M i on faces  1, 2 Of the dihedral  angle.  Or,  for  the same  base  su r faces  fo rmed by 
a dihedral  angle T=Tr/n (n= l ,  2, . . .  ), one can a lso  use the ref lec t ion  method (again employing the par i ty  p rop -  
e r t i e s  of the functions w, w i, and the nonpari ty of the functions W'N, W'iN re la t ive  to the corresponding face 
of the dihedral  angle) to e l iminate  f r o m  Eq. (4) t e r m s  containing values of ~nIS, and obtaining finally an ex-  
p r e s s i o n  fo r  the potential  �9 in the per turbed  region solely in t e r m s  of values of #IS on the faces  of the dihedral  
angles : 

t o k, ~ + s ~  2 .  I s i~+<~) ,  ~2  (M) = 2~ ox ~ (6) 
i = l  

! ! 

iVON,~ , wN,~  = 5 ( ,**ds, 5( w; .ds  
81§ 2 8ii+Si2 

Here  w~ N, W'iN are  conormal  der iva t ives  of the Vol t e r ra fune t ion  of the point M and the compensat ing point M i. 

If we di f ferent ia te  the integral  ope ra to r s  I with r e spec t  to x (in Eq. (6) we must  f i r s t  in tegra te  by pa r t s  
over  ~), it can be shown, as in [12], fo r  the case  of an isolated wing (n =1), that Eq~ (5) gives a solution to the 
d i rec t  p rob lem of de termining the veloci ty potential  f rom the normal  der iva t ive  4~ on the body sur face ,  while 
Eq. (6) p rovides  a solution of the converse  p rob lem of de termining  the velocity potential  f rom a p r e s s u r e  
dis t r ibut ion %~ specif ied on the body su r face .  
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For  a dihedral  angle "y=TF/n (n= l ,  2, . . . )  the number  of compensat ing points in the superposi t ion  for  the 
face interact ion region is independent of the depth of the location of the point under considera t ion within the 
flow, and fo r  points not lying on a face is equal to ( 2 n - l ) .  

For  a region in the f o r m  of a band, l imi ted  by a combination of two para l le l  faces  (~/2, ~/2),  fo r  a region 
in the fo rm of a semiband l imited by t h r ee  faces ,  fo r  the internal region of a t h r e e - f a c e d  p r i s m  (~/2, ,v/4, 7r/4), 
(r/3, ~r/3~ ~/3), (v/2, lr/3, 7F/6) and the internal  region of a four - faced  p r i s m  (~/2, 7r/2, 7r/2, v/2) a construct ion 
using the Green  function compensat ing s ingular i t ies  is a lso  poss ib le  [2, 13]. The number  of compensat ing 
points for  these  superpos i t ions  i nc rea se s  do~vn the flow as a function of the number  of ref lec t ions  f rom the 
faces  of the cha rac t e r i s t i c  su r faces  of the original point M and the compensat ing points M i. The pr inciple  
of Green ' s  function construct ion depending o n t h e  number  of ref lect ions  for  the d i rec t  p rob lem in a band was  
presented  in [2]. Location of compensat ing points and Green ' s  function construct ion a r e  p e r f o r m e d  s i m i l a r l y  
in the di rect  and converse  p rob lems  for  the other  p r i s m a t i c  regLons with l a r g e r  number  of ref lect ing faces  
r e f e r r e d  to above. We will i l lus t ra te  this with the example  of the d i rec t  p rob lem within a t h r e e - f a c e d  p r i s m  
(7r/6, ~/3,  ~r/2), the edges of which a r e  para l le l  to the incident flow veloci ty (Fig. 3). Fo r  such a p r i s m  Fig. 4 
shows the locat ions of compensat ing points in the plane } =x for  the point M(x, 0, z), located on the face AB 
nea r  the dihedral  angle TA =r./6. In the ease  where  the face BC still  has no effect  on the point M, the c o m -  
pensating points for  the dihedral  angle TA a re  located on a c i rc le  of radius r =z with center  at the point A {x, 
0, 0). The point M i tse l f  is denoted by the digit 0, while the compensat ing points of the angle TA =r~/6 a re  de-  
noted by digits 1-5. When the face BC begins to affect point M, to compensa te  ref lec t ions  f r o m  the face BC 
we locate as a m i r r o r  image of the c i rc le  with center  at point A another  c i rc le  with cen te r  at A 1 (A-BC)  with 
corresponding compensat ing points 01-51. When the cha r ac t e r i s t i c  cones of points 01-51 begin to in te rsec t  
the face AC, then for  compensat ion in the Vol te r ra  express ion  for  the d i rec t  p rob lem of t e r m s  with C~v' N f r o m  
these  points on the f a c e  AC we genera te  a m i r r o r  ref lect ion of the c i rc le  with center  A I re la t ive  to the line 
AC in the form of a circle with center at the point A2(AI-AC), A3(A2-AB), Ar Aa(A4-AB), A6(A~-BC), 
AT(A6-AB, As-BC) , As(As-AC ). Figure 4 shows a construction of compensating points up to production of a 

~"\/'"\J'~ I 2 3 \ ~ \ /  .i , , \ / \  7~, 

/ \ .... i / -  
/ 1 \ , / I W  / \ 

' o8 5 0 O~ 5~ " 
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c, i r c le  with center  at the point As(G+2), when the posi t ions of compensat ing  points 08-58, cor responding to the 
original c i rc le  with center  at A, a re  repea ted .  After this the compensat ion  point const ruct ion begins with the 
same sequence as in the A - A  8 cycle;  Ag(As-BC), etc .  A s i m i l a r  per iodic i ty  occurs  with other  p r i s m s ,  for  
example ,  a t h r e e - f a c e  p r i s m  (=/4, ~/4,  ,v/2) causes  repet i t ion  of the si tuat ion corresponding to initial locat ion 
of the point M nea r  the angle ~/4 beginning with the ref lect ion AsQ+2). 

For  regions  having the p rope r ty  of visibi l i ty,  the boundary of which is a dihedral  angle ~/= (m/n)=, the 
method of compensat ing  s ingular i t ies  cannot be applied d i rec t ly ,  since in this case  one of the compensat ing 
points fal ls  in the region of the dihedral  angle ~ = (m/n)=. In this case  the dihedral  angle 7 = (m/n)~ is divided 
into l -<m dihedral  angles Tk=~/k (k<_ n), to each of which the compensat ing s ingular i ty  method is appl icable.  
On the planes dividing the dihedral  angle into subregions  Tk the solutions a r e  me rged  toge ther ,  employing the 
continuity of the potential  and its no rmal  der iva t ive .  Solution of the d i rec t  p rob lem in this case  reduces  to 
solution of a s y s t e m  of genera l ized  Abel equations [14]. 

In solving p rob lems  of flow over  complex regions  not having the p rope r ty  of visibi l i ty,  when both d i rec t  
action and diffract ion phenomena occur ,  the complex region can be divided into subregions ,  each of which has 
the p rope r ty  of vis ibi l i ty ,  with subsequent m e r g e r  of the solutions on the division boundaries  using the con-  
t inuity of the potential  and its normal  der ivat ive~ In the  case  of p r i s m a t i c  base  configurat ions one us,mal!y 
cons t ruc ts  planes which a re  continuations of the faces  of the base  p r i s m a t i c  configuration,  and then solutions 
a r e  me rged  on the port ions of these  planes lying in the per turbed  flow region ("slots") .  

In p rob l ems  dealing with end effects  of isolated wings [3], c r o s s - s h a p e d  wings with dihedral  angles be -  
tween wings of .y=~r/n [11], para l le l  wings [2], and dihedral  angles T = (m/n)= [14] the m e r g e r  is p e r f o r m e d  on 
sl i ts  which a re  a continuation of the wing base  p lanes .  

In p rob lems  of flow over  a p r i s m a t i c  configuration r ep resen t ing  the base  sur face  of an a i r c r a f t  con- 
f igurat ion of the w i n g - f u s e l a g e - a i r  scoop type,  when the faces  of the base  configurat ions in genera l  l ie in 
var ious  noncoplanar  planes ,  division into subregions  having the vis ibi l i ty  p rope r ty  cannot be p e r f o r m e d  by a 
single method.  The division mus t  be p e r f o r m e d  so that the number  of m e r g e r  planes is minimal  and so that 
the subregions  a re  s imple  in the sense  of finding a superposi t ion  of fundamental  Vo l t e r r a  solutions.  

F igure  1 shows an example  of the p r i s m a t i c  base  configuration fo r  a wing with s u p e r s t r u c t u r e s  [-[H of 
the f u s e l a g e - a i r  scoop type,  with division of the external  flow region into 13 s imple  subregions  having the 
vis ibi l i ty  p rope r ty ,  the faces  of which f o r m  dihedral  angles  ~ /n  and for  each of which a Green  function can be 
constructed.  We will cons ider  the d i rec t  p rob lem.  Green ' s  function defines the potential  at some point of the 
subregion in t e r m s  of the values of the normal  der iva t ive  of the potential  on the faces  which a re  boundaries  
of the subregion.  On the faces  which a re  boundar ies  of the base  configuration the values of ~>n a re  known,while 
on the s lo t -boundar ies  the values of (~n = 0 a r e  defined by the m e r g e r  conditions. As an i l lus t ra t ion we will 
construct  the m e r g e r  condition for  a point lying on the face AB, dividing regions 2 and 4 (Fig. 1). Subregion 
2 is bounded by the leading cha rac t e r i s t i c  su r face  ~ and the plane y =0 pass ing through face DA of s u p e r s t r u c -  
tu re  1, while subregion 4 is the inner  region of a t h r e e - f a c e d  p r i s m  ABC (let TA =7r/6, TB==/2 ,  ?C =T:/3). The 
potential  at the point M, lying on the boundary-s lo t  AB, can be wr i t t en  in subregion 2 as 

t (I~ (M+) = --~ ~(Dnroll2dS. 
SM 

Here r 0 is the hyperbol ic  dis tance of the point M(x, 0, z) to points of the region S M, which is the region on the 
plane ~? =0 bounded by the l ine of in te rsec t ion  of the cha r ac t e r i s t i c  cone of the point M with the plane ~ =0 and 
the l ine ~ =0 (the t r i ang le  MVW, Fig. 5). In subregion 4, using Green ' s  function construct ion for  that region,  
the potential  at the s a m e  point M can be r e p r e s e n t e d  as 

(I) (i_) = ~ ~ (~Pnr~i/2dS. ~7) 
o 

S~jk 

Here  r i j  is the hyperbol ic  dis tance f r o m  the compensat ing  point Mij to points of the region Sij k, which is a 
region on one of the faces  of p r i s m  ABC, bounded by the l ine of in te rsec t ion  of the c h a r a c t e r i s t i c  cone of com-  
pensat ion point Mij with the p r i s m  face k, the edges of this face ,  and the line ~ =0 on this face .  Figure  5 shows 
the si tuation in which the face  BC now has an effect  on thepo in t  M, lying on the face AB in the sphere  of action 
of the angle TA =7r/6, and in construct ion of the Green  function, as ide  f r o m  the point M i tself  (point 0) and c o m -  
pensat ing points M l - M  5 (points 1-5) t he re  par t ic ipa te  points M01 , Mll, M21 (points 01, 11, 21). In the lower  
left  co rne r  of Fig. 5 the l ines of in te rsec t ion  of cha rac t e r i s t i c  cones with apexes  at the points M0-Ms,  M01-M2i 
with the plane ~ =0 (region Sij on face AB) a r e  shown; the upper  r ight  c o r n e r  shows l ines of in tersec t ion  of 
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cha rac t e r i s t i c  cones with apexes  at the points M, M1, M 2, MS, Mll, M21 with the plane ~ =zBC (region Sij on 
face BC). On the faces  AD, AC, which a r e  faces  of the base  configuration,  the values of ~n a r e  known, while 
on the slot faces  AB, AC the value of ~n = 8 is subject  to  definition f r o m  the condition ~(M+) =4~{M _), which 
for  0lAB can be r ep re sen ted  as a genera l ized  Abel equation [14]: 

A (0 lAB) + E B~ (0 lAB) ---- F~ (@~ [A~, O~ IA~) + F~. (0 l~e)- (8) 

Here the t e r m  A (0) is an Abel ope ra to r  and co r re sponds  to the t e r m  in Eq.. (7) for  the region S M on the face 
AB with integrand ro-1/2 fo r  the point M; the t e r m  Bij (0) co r responds  to the t e r m  in Eq. (7) for  the region Sij 

the face AB with integrand r i j  - i /2 fo r  the point MIj, with the region Sij included within the region S M. On O i l  

the r ight  side of Eq. (8), aside f r o m  the t e r m  F1, which is a function of the known quanti t ies ~nIAD, ~ ]  AC' we 
have the t e r m  F2, which is a function of the p rev ious ly  unknown quantity 01BC on the  h c e  BC. To de te rmine  
0IBC we also  use the condition r =r ), wr i t t en  fo r  a point M lying on the face IK~, which is a boundary 
of" the subregions  4 and 5. In the genera l  case ,  the m e r g e r  conditions fo r a l l  subregions  f o r m  a closed s y s t e m  
of genera l ized  Abel equations of the f o r m  of Eq. (8) for  de te rmina t ion  of the 0 values on the s lo t - f aces  of the 
configuration.  DefinitiOn of 0 values on these  faces  is p e r f o r m e d  sequential ly  down the flow, commencing 
f r o m  regions  of s imple  flows to  r e ~ o n s  where  mult iple  ref lec t ions  f r o m  the faces  and diffract ion on the edges 
begin to have an effect .  For  example ,  there  a r e  regions  on each of the faces  AB and BC where  the flow is 
stil l  unper turbed,  ~AB = 0I BC =0 (the line OGQ is the t r a c k  of the leading cha rac t e r i s t i c  su r face  in the plane 

= 0); fu r ther  down the flow on the face AB the re  is a region of diff ract ion f r o m  the dihedral  angle ~/A' in which 
ref lec t ion f r o m  the face CH still  has no effect  and the value of 01AB can be de te rmined  as  the effect  of e l e -  
men t a ry  diffract ion on the angle, etc.  As we move down the flow, new regions  on the faces  with undetermined 
values of 0ij a r e  included, and these  values a r e  found f r o m  known values of �9 n on the faces  of the base  con-  
f igurat ion and values of 0ij de te rmined  previous ly  in h lgher - ly ing  regions .  The pr inciple  of sequential  d e t e r -  
ruination of 0ij values down the flow was descr ibed  in [3, 2, 14]. 
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GAS C A V I T Y  D Y N A M I C S  IN A C O N T A C T  

E L E C T R I C A L  E X P L O S I O N  

V.  A.  B u r t s e v ,  V~ V. K u c h e r e n k o ,  
a n d  V~ V.  S h a m k o  

UNDERWATER 

UDC 532.528 

A contact e lec t r i ca l  explosion is often used for  the e lee t rohydro impulse  des t ruc t ion  of m a t e r i a l s  [1], 
when one of the e lec t rodes  is the workp iece .  This means  that  the v a p o r - g a s  cavi ty  which is fo rmed  develops 
d i rec t ly  on the object being p r o c e s s e d  (the solid wall) ,  so the l a t t e r  may  affect both the p r e s s u r e  field fo rmed  
in the liquid and the m anne r  in which the e lec t r i ca l  explosion develops.  

In the ma jo r i t y  of theore t ica l  invest igat ions on the  dynamics  of cavi t ies  in contact with a solid wall  [2-5], 
the p rob lem of the col lapse  of a spher ica l  cavi ty  [2, 3] or  an ell ipsoidal  cavity [4, 5] is cons idered  as the model  
p rob lem.  However ,  as exper iment  shows [6-10], because  of the  initial i nc rease  inthe cavi ty  under a s y m m e t r i c  
boundary conditions it is subject  to deformat ions .  The changes in shape which t h e r e f o r e  occur  may  be ex-  
t r e m e l y  important  [6, 8], and, consequently,  according to the r e su l t s  obtained in [4, 5], the nature  of the col lapse  
of the cavi ty  becomes  unpredic table .  Hence,  in this paper  an a t tempt  is made to invest igate  the dynamics  of 
the cavity genera ted  by a contact e lec t r i ca l  explosion exper imenta l ly  in o rde r  to c la r i fy  the contribution of this  
s tage of the p r o c e s s  to the m e c h a n i s m  of the des t ruc t ive  action of the contact e l ec t r i ca l  explosion,  and to find 
ways  of improving technplogical  p r o c e s s e s  which use this so r t  of e l ec t r i ca l  explosion.  

For  convenience we var ied the length of the d ischarge  gap l while keeping the remain ing  p a r a m e t e r s  
fixed, viz.,  the breakdown voltage U0 = 50 kV, the capaci tance  of the capac i to r  ba t t e ry  C = 10 -6 F, the inductance 
L=4~ • 1~ -6 H, the conductivity of the liquid a=0.005 (fl .m)  -1, and the equivalent r e s i s t a n c e  of the c i rcui t  
R e =0.1 fl, defined f r o m  the curve  of the cur ren t  for  the sho r t - c i r cu i t ed  d i scharge  gap. The p r o c e s s  was s t a -  
bi l ized by initiating a d i scharge  with a copper  conductor  of d i ame te r  0.05 m m .  The dynamic pa t te rn  of the 
development  of the cavi t ies  was r eco rded  with an SFR-2M high-speed  mot ion-p ic tu re  c a m e r a  in a t ime  loop 
using the method d e s c r i b e d  in [6, 8], and was  r ep re sen t ed  by a s e r i e s  of photographs (Fig. 1) as a function of 
the length of the d i scharge  gap (on the right of each photograph we show the spat ia l  sca le  b =94 ram,  and the 
exposure  t ime  ~0.2-0.4  m s ec ) .  

Whereas  when the re  is no contact sur face  the d is in tegra t ion  of the p l a sma  cyl inder  in wa t e r  with s i m i l a r  
energy p a r a m e t e r s  is accompanied  by its convers ion  into a pulsating cavity of quas t spher ica l  f o r m  [11], in the 
case  of a contact explosion the evolution of this  p roce s s  is m o r e  complex:  The fo rmat ion  of cavi t ies  is ob- 
se rved  in the fo rm of a spher ica l  segment  (see Figs la  and b), dome-shaped  (Figs. l c - f )  or  a quasieyl indr ical  
shape (Fig. lg) .  

The e x t r e m a l  a m p l i t u d e - f r e q u e n c y  p a r a m e t e r s  of the p roce s s  a r e  shown in the table  (the number  of the 
row of the table  co r responds  to the outer  number  of the s e r i e s  of photographs in Fig. 1, i .e. ,  1 co r re sponds  to 
a, 2 co r re sponds  to b, etc.) .  
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