PROBLEMS OF SUPERSONIC FLOW OVER BODIES
OF PRISMATIC CONFIGURATION

N. F. Vorob'ev UDC 533.601.15

In problems of flow of a supersonic stream (M > 1) over bodies with a spatial configuration which slightly
perturbs the incident flow, the gasdynamic equations can be reduced to a wave equation for the perturbation
velocity potential in the form {1, 2]

@) =D, — Dy — D, =0,

where the x axis is coplanar with the velocity vector of the incident flow. The perturbed flow region islimited
by the body surface and the leading characteristic of the surface, which is the envelope of characteristic cones
whose peaks lie on the supersonic portion of the body!s leading edge.

In considering problems of flow over an isolated wing of finite size in the linear formulation, the condi~
tions on the wing surface are referred to a base surface, which is a plane which deviates only slightly from
the wing surface [3]. In considering flow over bodies with the configuration of an airplane (wing—fuselage—
air scoops) for the base surface we choose cylindrical surfaces, in particular, prismatic configurations with
edges parallel to the incident flow, such that the faces of these prismatic configurations deviate only slightly
from the slightly curved aircraft surfaces (Fig. 1). The base surface to which the boundary conditions on the
body are referred is a surface of the time-oriented type. The value of the potential at the point M, y, z) in
the perturbed flow region depends on the initial data for only that part of the boundary manifold ¢he leading
characteristic surface o and the base surface S) which is located within the characteristic cone I': &—¢)—

[y = +e—)4/=o0.

If the region of dependence D of the point M has the property of visibility ¢hat is, if any point of the region
of dependence can be joined to the point M by a straight line lying wholly within the region of dependence), then
the line of intersection of the characteristic cone T' with the boundary manifold o, S defines the region of de-
pendence of the point M on this manifold. The condition of visibility in the region of dependence D is satisfied
in the case where for points of the perturbed flow region on the body surface there are no points located within
the shadow zone, i.e., when the straight line passing through the point M within the characteristic cone inter~
sects the body surface at not more than one point, I these exists a plane T passing through point M and tangent
to the body surface, separating in space a visibility zone and a shadow zone for point M, then the region of
dependence of point M ceases to have the property of visibility. On the body surface the boundary of the visi~
bility zone and the shadow zone for point M is the line of tangency t of the plane T on the body surface (line
AA on the cylindrical base surface of Fig, 2). The region of dependence of point M on the body in the visibility

Fig. 1 ’ Fig. 2
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zone is hounded by the line v on which the characteristic cone I' intersects the body surface, while in the shadow
zone the region of dependence is limited by the spiral line v, which has a characteristic direction everywhere
on the body surface. The spiral line v, M,B,) passing through the point of intersection M, of the lines v and t.
The region of dependence of the point M in the visibility zone lies within the surface of the characteristic cone
I', while in the shadow zone the region lies within the surface Iy, which is formed by the envelope of cones
with vertices on the spiral line y,. The surface T}, is tangent to the surface I" along a line lying in the plane

of the shadow boundary T. The potential value at the point M depends on the initial data of only that portion

of the boundary manifold (body surface and leading characteristic surface) which is located within the char-
acteristic surface I' in the visibility zone and within the surface T} in the shadow zone. The portion of the
boundary manifold in the shadow zone located between the surfaces IT' and Iy has no effect on the potential at
point M. On the body, this is the region M ByC, limited by the leading edge of the body, the spiral line MyBy,
and the line of intersection of the characteristic cone I" with the body surface in the shadow zone M,C. For

a prismatic configuration with dihedral angle 7=+ = 27, the surface T is a characteristic cone with apex at
the point M, [4]. Tn [5, 6], which considered flow over bodies with shadow zones, the solution at point M was
presented as dependent on boundary values on a portion of the body surface in the shadow zone lying outside
the actual region of dependence of the point M. This discrepancy was noted in [7], but no method of solving
the diffraction problem was suggested.

For the region of dependence D having the property of visibility, using Green's formula
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an integral representation of the solution in Vo}terra form can be thmned 18, 1, 2, 9}
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where w is the fundamental Volterrasolution; /9N, conormal derivative <I>'N=8t§/ 3N, w'y=0w/8N); I', portion
of the characteristic cone from the apex at point M to the intersection with the boundary manifold; S, o, portions
of the surfaces of the body and the leading characteristic cone cut by the characteristic cone T'.

For the region of dependence D which does not have the property of visibility, we may formally write an
integral representation of the potential value at point M inVolterraform, applying Green's formula (1) to this
region:

i w fDN @ wN
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Here T, T, are the portion of the surface of the characteristic cone with apex at point M in the visibility zone
and the portion of the envelope of cones with apexes on the spiral line v,; o, 0§ are the portion of the leading
characteristic surface cut by the cone I' and the surface I'y; S, S; are the regions of dependence on the body
in the visibility zone and the shadow zone,

On the right side of Eqs. 2), (3), in view of the properties of the Volterra function the integral over the
surface I' vanishes. On the leading characteristic surface o, o) the value of the perturbation potential ¢ can
be taken equal to zero (®|;=0) without limiting generality, since on the surface o, o, the direction of the deriva~
tive 8/8N coincides with the direction of the tangent to the line z =const of this surface, which means that on
the surface o, gy, along with the value of @ the value of 88/9N is also defined and equal to zero, so that the inte-
gral over the surface o, g, in Egs. ), (3) vanishes. While in Eq. @) there remains only the integral over the
body surface S, in Eq. (3) together with the integral over the body surface S +8,, there also remains the integral
over the surface Iy, which in view of the properties of the Volterrafunction does not vanish. This means that
in Eq. (3) the potential at the point M is determined not only by the values of &, d'y on the body, but also by the
values of &, &% unspecified on the surface I and the integral represertation of Eq. (3) is not a solution of the
boundary problem analogous fo that of Eq. @2) for the zone of dependence possessing the property of vnsibﬂity

The problem of flow over bodies with regions of dependence not havingthe visibility:property is wmthm
the class of diffraction problems: The character of the action on point M of points of influence lying within-
the shadow zone differs from the character of action of points of influence lying-within the vistbility zone., While
for the visibility zone we may use a solution Inthe Volferra form, reflecting the character of the direct action
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of points of influence on the point in question, for solution of the diffraction problem it is necessary to find
some solution of the wave equation which will reflect the diffraction character of the action of points of in-
fluence on that point. For the case of an arbitrary dihedral angle 7=+ =<2r [4] found a fundamental solution
vy which considers the diffraction character of the phenomenon.

In Eq. ) for the visibility region, in view of the assumption that @{U=O without limiting generality, and
the properties of the Volterrafunction, the potential at the point is expressed solely in terms of infegrals over
the body surface S:

. 1 ] w,CD‘,’-L,(D,w;V 4
O (M) = 5=—-1Is . “)
Then, since conditions on the body surface are referred to base surfaces of a time-oriented type, where the
conormal derivative of the potential @4 coincides with the normal derivative @', to the accuracy of small
second-order terms, Eq. (4) provides a representation of the perturbation potential in terms of the values of

#|g and 9! |q.

On the time-oriented surfaces there exists a relationship between the value of the potential &|g and its
normal derivative @' [, defined in the general case of a cylindrical base surface by an integrodifferential ex-
pression, which can be obtained from Eq. @) in the limit as the point M approaches the surface S (see, for
example, [2]).

In the case of a region, the base surfaces of which are an arbitrary dihedral angle 0 <y<n, where y#
7/n =1, 2,...), the values of ®|g unspecified in the direct problem ¢the problem of determining the velocity
potential from the body geometry) on the face surfaces are defined in terms of the values of @r'l I‘S from a sys-
tem of two integrodifferential equations by the method of successive approximation [10].

For some prismatic regions, by using the method of compensating singularities it is possible to find a
superposition of fundamental solutions (Green's functions) in which in Eq. @) for the velocity potential terms
containing values of ®|g on the faces are excluded in the direct problem, and the value of the potential is ex-
pressed solely in terms of the values of the normal derivative of the potential (I)r'llS on the faces, or in Eq. (4)
for the velocity potential terms containing values of <I>I'IIS on the faces areexcluded in the converse problem.

Thus, for base surfaces formed by a dihedral angle y=r/n =1, 2,...), the integrals in Eq. @) from
terms containing the value of the potential ®|g can be eliminated by using the method of reflection from the
faces of the dihedral angles for compensating singularities of the Volterratype [1, 2, 11], finally obtaining for
the potential ® in the perturbed region an expression solely in terms of values of ér'lfs specified on the dihedral
faces:
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Here w, w; are Volterrafunctions of the point M and the compensating point M;; 84, 8y, Siy» Si; are the regions
of dependence of points M, M; on faces 1, 2 of the dihedral angle. Or, for the same base surfaces formed by

a dihedral angle y=7/n (@@=1, 2,...), one can also use the reflection method (again employing the parity prop~
erties of the functions w, wi, and the nonparity of the functions w'N, W'iN relative to the corresponding face
of the dihedral angle) to eliminate from Eq. @) terms containing values of &' ’S’ and obtaining finally an ex-
pression for the potential @ in the perturbed region solely in terms of values of &[gon the faces of the dihedral
angles: _ :
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Here w'y, W'y are conormal derivatives of the Volterrafunction of the point M and the compensating point M.

If we differentiate the integral operators Iwith respect to x (in Eq. (6) we must first integrate by parts
over £), it can be shown, as in [12], for the case of an isolated wing m=1), that Eq. (5) gives a solution to the
direct problem of determining the velocity potential from the normal derivative & on the body surface, while
Eq. (6) provides a solution of the converse problem of determining the velocity potential from a pressure
distribution <I>é specified on the body surface.
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Fig. 3

For a dihedral angle y=n/n =1, 2,...) the number of compensating points in the superposition for the
face interaction region is independent of the depth of the location of the point under consideration within the
flow, and for points not lying on a face is equal to 2n—1),

For a region in the form of a band, limited by a combination of two parallel faces (r/2, n/2), for a region
in the form of a semiband limited by three faces, for the internal region of a three-faced prism /2, 7/4, 1/4),
/3, /3, 1/3), @/2, 1/3, 7/6) and the internal region of a four~faced prism (r/2, 7/2, 7/2, 7/2) a construction
using the Green function compensating singularities is also possible [2, 13]. The number of compensating
points for these superpositions increases down the flow as a function of the number of reflections from the
faces of the characteristic surfaces of the original point M and the compensating points M;. The principle
of Green's function construction depending on the number of reflections for the direct problem in a band was
presented in [2]. Location of compensating points and Green's function construction are performed similarly
in the direct and converse problems for the other prismatic regions with larger number of reflecting faces
referred to above. We will illustrate this with the example of the direct problem within a three-faced prism
(r/6, 1/3, 1/2), the edges of which are parallel to the incident flow velocity (Fig. 3). For such a prism Fig. 4
shows the locations of compensating points in the plane £ =x for the point M, 0, z), located on the face AB
near the dihedral angle v A =x/6. Inthe case where the face BC still has no effect on the point M, the com-~
pensating points for the dihedral angle v, are located on a circle of radius r =z with center at the point A&,
0, 0). The point M itself is denoted by the digit 0, while the compensating points of the angle YA =71/6 are de-
noted by digits 1-56. When the face BC begins to affect point M, to compensate reflections from the face BC
we locate as a mirror image of the circle with center at point A another circle with center at A, (A~ BC) with
corresponding compensating points 01-51. When the characteristic cones of points 01-51 begin to intersect
the face AC, then for compensation in the Volterraexpression for the direct problem of terms with &wt, from
these points on the face’ AC we generate a mirror reflection of the circle with center A, relative to the line
AC in the form of a circle with center at the point A,(A;—AC), A3(A;,~AB), A (A;—AC), A;(A;—AB), A;(A;,—BC),
A (Ag—AB, A;—BC), Az(A;—AC). Figure 4 shows a construction of compensating points up to production of a
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circle with center at the point As(e*‘z)s when the positions of compensating points 08-58, corresponding to the
original circle with center at A, are repeated. After this the compensation point construction begins with the
same sequence as in the A~A; cycle; Ay(Ag—BC), ete. A similar periodicity occurs with other prisms, for
example, a three~face prism (r/4, 7/4, 7/2) causes repetition of the situation corresponding to initial location
of the point M near the angle 7/4 beginning with the reflection Ag(4).

For regions having the property of visibility, the boundary of which is a dihedral angle y= (m/n)7, the
method of compensating singularities cannot be applied directly, since in this case one of the compensating
points falls in the region of the dihedral angle v= (m/n)r. In this case the dihedral angle y= (m/nir is divided
into { =<m dihedral angles y; =7/k (k=<n), to each of which the compensating singularity method is applicable.
On the planes dividing the dihedral angle into subregions vy the solutions are merged together, employing the
continuity of the potential and its normal derivative. Solution of the direct problem in this case reduces to
solution of a system of generalized Abel equations [14].

In solving problems of flow over complex regions not having the property of visibility, when both direct
action and diffraction phenomena occur, the complex region can be divided into subregions, each of which has
the property of visibility, with subsequent merger of the solutions on the division boundaries using the con~
tinuity of the potential and its normal derivative. Inthe case of prismatic base configurations one usually
constructs planes which are continuations ofthefaces of the base prismatic configuration, and then solutions
are merged on the portions of these planes lying in the perturbed flow region ("slots").

In problems dealing with end effects of isolated wings [3], cross-shaped wings with dihedral angles be-
tween wings of y=n/n [11], parallel wings [2], and dihedral angles y=(m/n)r [14] the merger is performed on
slits which are a continuation of the wing base planes.

In problems of flow over a prismatic configuration representing the base surface of an aircraft con-
figuration of the wing —fuselage —air scoop type, when the faces of the base configurations in general lie in
various noncoplanar planes, division into subregions having the visibility property cannot be performed by a
single method, The division must be performed so that the number of merger planesis minimal and so that
the subregions are simple in the sense of finding a superposition of fundamental Volterra solutions.

TFigure 1 shows an example of the prismatic base configuration for a wing with superstructures I-III of
the fuselage —air scoop type, with division of the external flow region into 13 simple subregions having the
visibility property, the faces of which form dihedral angles m/n and for each of which a Green function can be
constructed. We will consider the direct problem. Green's function defines the potential at some point of the
subregion in terms of the values of the normal derivative of the potential on the faces which are boundaries
of the subregion. On the faces which are boundaries of the base configuration the values of d)r’l are known, while
on the slot~-boundaries the values of '1’1'1= 0 are defined by the merger conditions. As an illustration we will
construct the merger condition for a point lying on the face AB, dividing regions 2 and 4 (Fig. 1). Subregion
2 is bounded by the leading characteristic surface o and the plane y =0 passing through face DA of superstruc-
ture 1, while subregion 4 is the inner region of a three~faced prism ABC (et YA =7/6, -yB=7r/2, vo =7/3). The
potential at the point M, lying on the boundary-slot AB, can be written in subregion 2 as

O (M) == j’ f Drre 2 ds.
Su

Here r, is the hyperbolic distance of the point M(x, 0, z) to points of the region Sy, which is the region on the
plane 1=0 bounded by the line of intersection of the characteristic cone of the point M with the plane =0 and
the line £ =0 the triangle MVW, Fig. 5). In subregion 4, using Green's function construction for that region,
the potential at the same point M can be represented as

O (M) = %2 5 f D,ri2dS. -
Siin

Here T is the hyperbolic distance from the compensating point Mij to points of the region Sijks which is a
region on one of the faces of prism ABC, bounded by the line of intersection of the characteristic cone of com-
pensation point Mi;j with the prism face k, the edges of this face, and the line £ =0 on this face. Figure 5 shows
the situation in which the face BC now has an effect onthepoint M, lying on the face AB in the sphere of action
of the angle vu =r/6, and in construction of the Green function, aside from the point M itself (point 0) and com~
pensating points M; —M; (oints 1~5) there participate points My, My, My; fpoints 01, 11, 21). Inthe lower
left corner of Fig. 5 the lines of intersection of characteristic cones with apexes at the points My—M;, Mgy ~My
with the plane n =0 (region Sij on face AB) are shown; the upper right corner shows lines of intersection of



characteristic cones with apexes at the points M, M;, My, My, My, My; with the plane { =zpg (region Sjj on
face BC). Onthe faces AD, AC, which are faces of the base configuration, the values of & are known, while
on the slot faces AB, AC the value of ‘I?t'1= 6 is subject to definition from the condition (M) =®M -), which
for 6]op can be represented as a generalized Abel equation [14]:

4 6 fAﬁ) +'2 B;(0 |AB5 ~F 1 (@; [ap, @nlac) + F 5 (0 ]B‘C)f.k ®)

Here the term A(9) is an Abel operator and corresponds to the term in Eq.-(7) for the region Sy; on the face
AB with integrand ro"i/ 2 for the point M; the term Bjj(6) corresponds to the term in Eq. (7) for the region Sij
on the face AB with integrand rij"i/ ? for the point Mjj, with the region S;j included within the region Sy On
the right side of Eq. (8), aside from the term F;, which is a function of the known quantities <I>I'll AD» @;] AC» We
have the term F,, which is a function of the previously unknown quantity 6|pc on the face BC. To determine
8lpc we also use the condition ®(M,) =@(M_), written for a point M lying on the face BC, which is a boundary
of the subregions 4 and 5. In the general case, the merger conditions forall subregions form a closed system
of generalized Abel equations of the form of Eq. (8) for determination of the § values on the slot-faces of the
configuration. Definition of § values on these faces is performed sequentially down the flow, commencing
from regions of simple flows to regions where multiple reflections from the faces and diffraction on the edges
begin to have an effect. For example, there are regions on each of the faces AB and BC where the flow is
still unperturbed, 6y 5=0| o =0 the line OGQ is the track of the leading characteristic surface in the plane
1 =0); further down the flow on the face AB there is a region of diffraction from the dihedral angle y A in which
reflection from the face CH still has no effect and the value of 9] o g can be determined as the effect of ele-
mentary diffraction on the angle, etc, As we move down the flow, new regions on the faces with undetermined
values of 6;; are included, and these values are found from known values of <I>I'l on the faces of the base con-
figuration and values of ¢;; determined previously in higher-lying regions. The principle of sequential deter-
mination of 05 values down the flow was described in {3, 2, 14].
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GAS CAVITY DYNAMICS IN A CONTACT UNDERWATER
ELECTRICAL EXPLOSION

V. A. Burtsev, V. V. Kucherenko, UDC 532.528
and V. V. Shamko

A contact electrical explosion is often used for the electrohydroimpulse destruction of materials [1],
when one of the electrodes is the workpiece. This means that the vapor —gas cavity which is formed develops
directly on the object being processed the solid wall), so the latter may affect both the pressure field formed
in the liquid and the manner in which the electrical explosion develops.

In the majority of theoretical investigations onthe dynamics of cavities in contact with a solid wall [2~5],
the problem of the collapse of a spherical cavity [2, 3] or an ellipsoidal cavity [4, 5] is considered as the model
problem. However, as experiment shows [6-10], because of the initial increase inthe cavity under asymmetric
boundary conditions it is subject to deformations. The changes in shape which therefore occur may be ex-
tremely important [6, 8], and, consequently, according to the results obtained in [4, 5], the nature of the collapse
of the cavity becomes unpredictable. Hence, in this paper an attempt is made to investigate the dynamics of
the cavity generated by a contact electrical explosion experimentally in order to clarify the contribution of this
stage of the process to the mechanism of the destructive action of the contact electrical explosion, and to find
ways of improving technological processes which use this sort of electrical explosion.

For convenience we varied the length of the discharge gap ] while keeping the remaining parameters
fixed, viz., the breakdown voltage U, =50 kV, the capacitance of the capacitor battery C =10~% F, the inductance
1.=4,3x1¢7% H, the conductivity of the liquid 0=0.005 @ 'm)“i, and the equivalent resistance of the circuit
Re =0.1 Q, defined from the curve of the current for the short-circuited discharge gap. The process was sta-
bilized by initiating a discharge with a copper conductor of diameter 0.05mm. The dynamic pattern of the
development of the cavities was recorded with an SFR-2M high-speed motion-picture camera in a time loop
using the method described in [6, 8], and was represented by a series of photographs (Fig. 1) as a function of
the length of the discharge gap (on the right of each photograph we show the spatial scale b=94 mm, and the
exposure time ~0.2-0.4 msec).

Whereas when there is no contact surface the disintegration of the plasma cylinder in water with similar
energy parameters is accompanied by its conversion into a pulsating cavity of quasispherical form [11], in the
case of a contact explosion the evolution of this process is more complex: The formation of cavities is ob-
served in the form of a spherical segment (see Figs 1a and b), dome-shaped (Figs. 1c-f) or a quasicylindrical
shape (FFig. 1g).

The extremal amplitude —frequency parameters of the process are shown in the table the number of the
row of the table corresponds to the outer number of the series of photographs in Fig. 1, i.e., 1 corresponds to
a, 2 corresponds to b, etc.).
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